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Abstract

Fine-grained visual classification (FGVC) which aims at rec-
ognizing objects from subcategories is a very challenging task
due to the inherently subtle inter-class differences. Most ex-
isting works mainly tackle this problem by reusing the back-
bone network to extract features of detected discriminative
regions. However, this strategy inevitably complicates the
pipeline and pushes the proposed regions to contain most
parts of the objects thus fails to locate the really important
parts. Recently, vision transformer (ViT) shows its strong
performance in the traditional classification task. The self-
attention mechanism of the transformer links every patch to-
ken to the classification token. In this work, we first evalu-
ate the effectiveness of the ViT framework in the fine-grained
recognition setting. Then motivated by the strength of the at-
tention link can be intuitively considered as an indicator of the
importance of tokens, we further propose a novel Part Selec-
tion Module that can be applied to most of the transformer ar-
chitectures where we integrate all raw attention weights of the
transformer into an attention map for guiding the network to
effectively and accurately select discriminative image patches
and compute their relations. A contrastive loss is applied to
enlarge the distance between feature representations of con-
fusing classes. We name the augmented transformer-based
model TransFG and demonstrate the value of it by conducting
experiments on five popular fine-grained benchmarks where
we achieve state-of-the-art performance. Qualitative results
are presented for better understanding of our model.

Introduction
Fine-grained visual classification aims at classifying sub-
classes of a given object category, e.g., subcategories of
birds (Wah et al. 2011; Van Horn et al. 2015), cars (Krause
et al. 2013), aircrafts (Maji et al. 2013). It has long been
considered as a very challenging task due to the small inter-
class variations and large intra-class variations along with
the deficiency of annotated data, especially for the long-
tailed classes. Benefiting from the progress of deep neu-
ral networks (Krizhevsky, Sutskever, and Hinton 2012; Si-
monyan and Zisserman 2014; He et al. 2016), the perfor-
mance of FGVC has obtained a steady progress in recent
years. To avoid labor-intensive part annotation, the com-
munity currently focuses on weakly-supervised FGVC with

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An overview of performance comparison of ViT
and TransFG with state-of-the-art methods CNNs on five
datasets. We achieve state-of-the-art performance on most
datasets while performing a little bit worse on Stanford Cars
possibly due to the more regular and simpler car shapes.

only image-level labels. Methods now can be roughly clas-
sified into two categories, i.e., localization methods and
feature-encoding methods. Compared to feature-encoding
methods, the localization methods have the advantage that
they explicitly capture the subtle differences among sub-
classes which is more interpretable and yields better results.

Early works in localization methods rely on the annota-
tions of parts to locate discriminative regions while recent
works (Ge, Lin, and Yu 2019a; Liu et al. 2020; Ding et al.
2019) mainly adopt region proposal networks (RPN) to pro-
pose bounding boxes which contain the discriminative re-
gions. After obtaining the selected image regions, they are
resized into a predefined size and forwarded through the
backbone network again to acquire informative local fea-
tures. A typical strategy is to use these local features for
classification individually and adopt a rank loss (Chen et al.
2009) to maintain consistency between the quality of bound-
ing boxes and their final probability output. However, this
mechanism ignores the relation between selected regions
and thus inevitably encourages the RPN to propose large
bounding boxes that contain most parts of the objects which
fails to locate the really important regions. Sometimes these
bounding boxes can even contain large areas of background



and lead to confusion. Additionally, the RPN module with
different optimizing goals compared to the backbone net-
work makes the network harder to train and the re-use of
backbone complicates the overall pipeline.

Recently, the vision transformer (Dosovitskiy et al. 2020)
achieved huge success in the classification task which shows
that applying a pure transformer directly to a sequence of
image patches with its innate attention mechanism can cap-
ture the important regions in images. A series of extended
works on downstream tasks such as object detection (Carion
et al. 2020) and semantic segmentation (Zheng et al. 2021;
Xie et al. 2021; Chen et al. 2021) confirmed the strong abil-
ity for it to capture both global and local features.

These abilities of the Transformer make it innately suit-
able for the FGVC task as the early long-range “receptive
field” (Dosovitskiy et al. 2020) of the Transformer enables
it to locate subtle differences and their spatial relation in the
earlier processing layers. In contrast, CNNs mainly exploit
the locality property of image and only capture weak long-
range relation in very high layers. Besides, the subtle dif-
ferences between fine-grained classes only exist in certain
places thus it is unreasonable to convolve a filter which cap-
tures the subtle differences to all places of the image.

Motivated by this opinion, in the paper, we present the
first study which explores the potential of vision transform-
ers in the context of fine-grained visual classification. We
find that directly applying ViT on FGVC already produces
satisfactory results while a lot of adaptations according to
the characteristics of FGVC can be applied to further boost
the performance. To be specific, we propose Part Selec-
tion Module which can find the discriminative regions and
remove redundant information. A contrastive loss is intro-
duced to make the model more discriminative. We name this
novel yet simple transformer-based framework TransFG,
and evaluate it extensively on five popular fine-grained vi-
sual classification benchmarks (CUB-200-2011, Stanford
Cars, Stanford Dogs, NABirds, iNat2017). An overview of
the performance comparison can be seen in Fig 1 where our
TransFG outperforms existing SOTA CNN methods with
different backbones on most datasets. In summary, we make
several important contributions in this work:

1. To the best of our knowledge, we are the first to verify the
effectiveness of vision transformer on fine-grained visual
classification which offers an alternative to the dominat-
ing CNN backbone with RPN model design.

2. We introduce TransFG, a novel neural architecture for
fine-grained visual classification that naturally focuses
on the most discriminative regions of the objects and
achieve SOTA performance on several benchmarks.

3. Visualization results are presented which illustrate the
ability of our TransFG to accurately capture discrimina-
tive image regions and help us to better understand how
it makes correct predictions.

Related Work
In this section, we briefly review existing works on fine-
grained visual classification and transformer.

Fine-Grained Visual Classification
Many works have been done to tackle the problem of fine-
grained visual classification and they can roughly be classi-
fied into two categories: localization methods (Ge, Lin, and
Yu 2019a; Liu et al. 2020; Yang et al. 2021) and feature-
encoding methods (Yu et al. 2018; Zheng et al. 2019; Gao
et al. 2020). The former focuses on training a detection net-
work to localize discriminative part regions and reuse them
to perform classification. The latter targets at learning more
informative features by either computing higher-order infor-
mation or finding the relationships among contrastive pairs.

Localization FGVC methods Previously, some works
(Branson et al. 2014; Wei, Xie, and Wu 2016) tried to ex-
ploit the part annotations to supervise the learning procedure
of the localization process. However, since such annotations
are expensive and usually unavailable, weakly-supervised
parts proposal with only image-level labels draw more atten-
tions nowadays. Ge et al. (Ge, Lin, and Yu 2019a) exploited
Mask R-CNN and CRF-based segmentation alternatively to
extract object instances and discriminative regions. Yang et
al. (Yang et al. 2021) proposed a re-ranking strategy to re-
rank the global classification results based on the database
constructed with region features. However, these methods all
need a special designed module to propose potential regions
and these selected regions need to be forwarded through the
backbone again for final classification which is not required
in our model and thus keeps the simplicity of our pipeline.

Feature-encoding methods The other branch of meth-
ods focus on enriching the feature representations to ob-
tain better classification results. Yu et al. (Yu et al. 2018)
proposed a hierarchical framework to do cross-layer bilin-
ear pooling. Zheng et al. (Zheng et al. 2019) adopted the
idea of group convolution to first split channels into different
groups by their semantic meanings and then do the bilinear
pooling within each group without changing the dimension
thus it can be integrated into any existed backbones directly.
However, these methods are usually not interpretable such
one does not know what makes the model distinguish sub-
categories with subtle differences while our model drops
unimportant image patches and only keeps those that con-
tain most information for the fine-grained recognition.

Transformer
Transformer and self-attention models have greatly facili-
tated research in natural language processing and machine
translation (Dai et al. 2019; Devlin et al. 2018; Vaswani et al.
2017). Inspired by this, many recent studies try to apply
transformers in computer vision area. Initially, transformer
is used to handle sequential features extracted by CNN back-
bone for the videos (Girdhar et al. 2019). Later, transformer
models are further extended to other popular computer vi-
sion tasks such as object detection (Carion et al. 2020; Zhu
et al. 2020), segmentation (Xie et al. 2021; Wang et al.
2021), object tracking (Sun et al. 2020). Most recently, pure
transformer models are becoming more and more popular.
ViT (Dosovitskiy et al. 2020) is the first work to show that
applying a pure transformer directly to a sequence of im-
age patches can yield state-of-the-art performance on image



Figure 2: The framework of our proposed TransFG. Images are split into small patches (a non-overlapping split is shown
here) and projected into the embedding space. The input to the Transformer Encoder consists of patch embeddings along with
learnable position embeddings. Before the last Transformer Layer, a Part Selection Module (PSM) is applied to select tokens
that corresponds to the discriminative image patches and only use these selected tokens as input. Best viewed in color.

classification. Based on that, Zheng et al. (Zheng et al. 2021)
proposed SETR to exploit ViT as the encoder for segmenta-
tion. He et al. (He et al. 2021) proposed TransReID which
embedded side information into transformer along with the
JPM to boost the performance on object re-identification. In
this work, we extend ViT to fine-grained visual classification
and show its effectiveness.

Method
We first briefly review the framework of vision transformer
and show how to do some preprocessing steps to extend it
into fine-grained recognition. Then, the overall framework
of TransFG will be elaborated.

Vision transformer as feature extractor
Image Sequentialization. Following ViT, we first prepro-
cess the input image into a sequence of flattened patches
xp. However, the original split method cut the images into
non-overlapping patches, which harms the local neighboring
structures especially when discriminative regions are split.
To alleviate this problem, we propose to generate overlap-
ping patches with sliding window. To be specific, we denote
the input image with resolution H ∗ W , the size of image
patch as P and the step size of sliding window as S. Thus
the input images will be split into N patches where

N = NH ∗NW = bH − P + S

S
c ∗ bW − P + S

S
c (1)

In this way, two adjacent patches share an overlapping area
of size (P − S) ∗ P which helps to preserve better local
region information. Typically speaking, the smaller the step

S is, the better the performance will be. But decreasing S
will at the same time requires more computational cost, so a
trade-off needs to be made here.
Patch Embedding. We map the vectorized patches xp into
a latent D-dimensional embedding space using a trainable
linear projection. A learnable position embedding is added
to the patch embeddings to retain positional information as
follows:

z0 = [x1pE, x
2
pE, · · · , xNp E] +Epos (2)

where N is the number of image patches, E ∈ R(P 2·C)∗D is
the patch embedding projection, and Epos ∈ RN∗D denotes
the position embedding.

The Transformer encoder (Vaswani et al. 2017) contains
L layers of multi-head self-attention (MSA) and multi-layer
perceptron (MLP) blocks. Thus the output of the l-th layer
can be written as follows:
z

′

l =MSA(LN(zl−1)) + zl−1 l ∈ 1, 2, · · · , L (3)

zl =MLP (LN(z
′

l)) + z
′

l l ∈ 1, 2, · · · , L (4)
where LN(·) denotes the layer normalization operation and
zl is the encoded image representation. ViT exploits the first
token of the last encoder layer z0L as the representation of the
global feature and forward it to a classifier head to obtain the
final classification results without considering the potential
information stored in the rest of the tokens.

TransFG Architecture
While our experiments show that the pure Vision Trans-
former can be directly applied into fine-grained visual classi-
fication and achieve impressive results, it does not well cap-
ture the local information required for FGVC. To this end,



Figure 3: A confusing pair of instances from the CUB-200-
2011 dataset. Model needs to has the ability to capture the
subtle differences in order to classify them correctly. The
second column shows the overall attention maps and two se-
lected tokens of our TransFG method. Best viewed in color.

we propose the Part Selection Module (PSM) and apply con-
trastive feature learning to enlarge the distance of represen-
tations between confusing sub-categories. The framework of
our proposed TransFG is illustrated in Fig 2.

Part Selection Module One of the most important prob-
lems in fine-grained visual classification is to accurately lo-
cate the discriminative regions that account for subtle dif-
ferences between similar sub-categories. For example, Fig 3
shows a confusing pair of images from the CUB-200-2011
(citation) dataset. The model needs to have the ability to cap-
ture the very small differences, i.e., the color of eyes and
throat in order to distinguish these two bird species. Re-
gion proposal networks and weakly-supervised segmenta-
tion strategies are widely introduced to tackle this problem
in the traditional CNN-based methods.

Vision Transformer model is perfectly suited here with
its innate multi-head attention mechanism. To fully exploit
the attention information, we change the input to the last
Transformer Layer. Suppose the model has K self-attention
heads and the hidden features input to the last layer are de-
noted as zL−1 = [z0L−1; z

1
L−1, z

2
L−1, · · · , zNL−1]. The atten-

tion weights of the previous layers can be written as follows:

al = [a0l , a
1
l , a

2
l , · · · , aKl ] l ∈ 1, 2, · · · , L− 1 (5)

ail = [ai0l ; ai1l , a
i2
l , · · · , a

iN
l ] i ∈ 0, 1, · · · ,K − 1 (6)

Previous works (Serrano and Smith 2019; Abnar and
Zuidema 2020) suggested that the raw attention weights do
not necessarily correspond to the relative importance of in-
put tokens especially for higher layers of a model, due to
lack of token identifiability of the embeddings. To this end,
we propose to integrate attention weights of all previous lay-
ers. To be specific, we recursively apply a matrix multiplica-

tion to the raw attention weights in all the layers as

afinal =

L−1∏
l=0

al (7)

As afinal captures how information propagates from the in-
put layer to the embeddings in higher layers, it serves as a
better choice for selecting discriminative regions compared
to the single layer raw attention weights aL−1. We then
choose the index of the maximum value A1, A2, · · · , AK

with respect to the K different attention heads in afinal.
These positions are used as index for our model to extract
the corresponding tokens in zL−1. Finally, we concatenate
the selected tokens along with the classification token as the
input sequence which is denoted as:

zlocal = [z0L−1; z
A1

L−1, z
A2

L−1, · · · , z
AK

L−1] (8)
By replacing the original entire input sequence with tokens
corresponding to informative regions and concatenate the
classification token as input to the last Transformer Layer,
we not only keep the global information but also force the
last Transformer Layer to focus on the subtle differences
between different sub-categories while abandoning less dis-
criminative regions such as background or common features
among a super class.

Contrastive feature learning Following ViT, we still
adopt the first token zi of the PSM module for classification.
A simple cross-entropy loss is not enough to fully super-
vise the learning of features since the differences between
sub-categories might be very small. To this end, we adopt
contrastive loss Lcon which minimizes the similarity of clas-
sification tokens corresponding to different labels and maxi-
mizes the similarity of classification tokens of samples with
the same label y. To prevent the loss being dominated by
easy negatives (different class samples with little similarity),
a constant margin α is introduced that only negative pairs
with similarity larger than α contribute to the loss Lcon. For-
mally, the contrastive loss over a batch of size B is denoted
as:

Lcon =
1

B2

B∑
i

[

B∑
j:yi=yj

(1− Sim(zi, zj)+

B∑
j:yi 6=yj

max((Sim(zi, zj)− α), 0)]

(9)

where zi and zj are pre-processed with l2 normalization and
Sim(zi, zj) is thus the dot product of zi and zj .

In summary, our model is trained with the sum of cross-
entropy loss Lcross and contrastive Lcon together which can
be expressed as:

L = Lcross(y, y
′) + Lcon(z) (10)

where Lcross(y, y
′) is the cross-entropy loss between the

predicted label y′ and the ground-truth label y.

Experiments
In this section, we first introduce the detailed setup including
datasets and training hyper-parameters. Quantitative analy-
sis is then given followed by ablation studies. We further



Table 1: Comparison of different methods on CUB-200-
2011, Stanford Cars.

Method Backbone CUB Cars
ResNet-50 ResNet-50 84.5 -
NTS-Net ResNet-50 87.5 93.9
Cross-X ResNet-50 87.7 94.6
DBTNet ResNet-101 88.1 94.5

FDL DenseNet-161 89.1 94.2
PMG ResNet-50 89.6 95.1

API-Net DenseNet-161 90.0 95.3
StackedLSTM GoogleNet 90.4 -

DeiT DeiT-B 90.0 93.9
ViT ViT-B 16 90.3 93.7

TransFG ViT-B 16 91.7 94.8

give qualitative analysis and visualization results to show the
interpretability of our model.

Experiments Setup
Datasets. We evaluate our proposed TransFG on five widely
used fine-grained benchmarks, i.e., CUB-200-2011 (Wah
et al. 2011), Stanford Cars (Krause et al. 2013), Stanford
Dogs (Khosla et al. 2011), NABirds (Van Horn et al. 2015)
and iNat2017 (Van Horn et al. 2018). We also exploit its us-
age in large-scale challenging fine-grained competitions.
Implementation details. Unless stated otherwise, we im-
plement TransFG as follows. First, we resize input images
to 448 ∗ 448 except 304 ∗ 304 on iNat2017 for fair compar-
ison (random cropping for training and center cropping for
testing). We split image to patches of size 16 and the step
size of sliding window is set to be 12. Thus the H,W,P, S
in Eq 1 are 448, 448, 16, 12 respectively. The margin α in Eq
9 is set to be 0.4. We load intermediate weights from official
ViT-B 16 model pretrained on ImageNet21k. The batch size
is set to 16. SGD optimizer is employed with a momentum
of 0.9. The learning rate is initialized as 0.03 except 0.003
for Stanford Dogs dataset and 0.01 for iNat2017 dataset. We
adopt cosine annealing as the scheduler of optimizer.

All the experiments are performed with four Nvidia Tesla
V100 GPUs using the PyTorch toolbox and APEX.

Quantitative Analysis
We compare our proposed method TransFG with state-of-
the-art works on above mentioned fine-grained datasets. The
experiment results on CUB-200-2011 and Stanford Cars
are shown in Table 1. From the results, we find that our
method outperforms all previous methods on CUB dataset
and achieve competitive performance on Stanford Cars.

To be specific, the third column of Table 1 shows the
comparison results on CUB-200-2011. Compared to the best
result StackedLSTM (Ge, Lin, and Yu 2019b) up to now,
our TransFG achieves a 1.3% improvement on Top-1 Ac-
curacy metric and 1.4% improvement compared to our base
framework ViT (Dosovitskiy et al. 2020). Multiple ResNet-
50 are adopted as multiple branches in (Ding et al. 2019)
which greatly increases the complexity. It is also worth not-
ing that StackLSTM is a very messy multi-stage training

Table 2: Comparison of different methods on Stanford Dogs.

Method Backbone Dogs
MaxEnt DenseNet-161 83.6

FDL DenseNet-161 84.9
Cross-X ResNet-50 88.9
API-Net ResNet-101 90.3

ViT ViT-B 16 91.7
TransFG ViT-B 16 92.3

Table 3: Comparison of different methods on NABirds.

Method Backbone NABirds
Cross-X ResNet-50 86.4
API-Net DenseNet-161 88.1
CS-Parts ResNet-50 88.5

FixSENet-154 SENet-154 89.2
ViT ViT-B 16 89.9

TransFG ViT-B 16 90.8

model which hampers the availability in practical use, while
our TransFG maintains the simplicity.

The fourth column of Table 1 shows the results on Stan-
ford Cars. Our method outperforms most existing methods
while performs worse than PMG (Du et al. 2020) and API-
Net (Zhuang, Wang, and Qiao 2020) with small margin. We
argue that the reason might be the much more regular and
simpler shape of cars. However, even with this property, our
TransFG consistently gets 1.1% improvement compared to
the standard ViT model.

The results of experiments on Stanford Dogs are shown in
Table 2. Stanford Dogs is a more challenging dataset com-
pared to Stanford Cars with its the more subtle differences
between certain species and the large variances of samples
from the same category. Only a few methods have tested on
this dataset and our TransFG outperforms all of them. While
ViT (Dosovitskiy et al. 2020) outperforms other methods by
a large margin, our TransFG achieves 92.3% accuracy which
outperforms SOTA by 2.0% with its discriminative part se-
lection and contrastive loss supervision.

NABirds is a much larger birds dataset not only from the
side of images numbers but also with 355 more categories
which significantly makes the fine-grained visual classifica-
tion task more challenging. We show our results on it in Ta-
ble 3. We observe that most methods achieve good results by
either exploiting multiple backbones for different branches
or adopting quite deep CNN structures to extract better fea-
tures. While the pure ViT (Dosovitskiy et al. 2020) can di-
rectly achieve 89.9% accuracy, our TransFG constantly gets
0.9% performance gain compared to ViT and reaches 90.8%
accuracy which outperforms SOTA by 1.6%.

iNat2017 is a large-scale dataset for fine-grained species
recognition. Most previous methods do not report results on
iNat2017 because of the computational complexity of the
multi-crop, multi-scale and multi-stage optimization. With
the simplicity of our model pipeline, we are able to scale
TransFG well to big datasets and evaluate the performance
which is shown in Table 4. This dataset is very challeng-
ing for mining meaningful object parts and the background



Table 4: Comparison of different methods on iNat2017.

Method Backbone iNat2017
ResNet152 ResNet152 59.0

IncResNetV2 IncResNetV2 67.3
TASN ResNet101 68.2
ViT ViT-B 16 68.7

TransFG ViT-B 16 71.7

Table 5: Ablation study on split way of image patches on
CUB-200-2011 dataset.

Method Patch Split Accuracy (%) Training Time (h)
ViT Non-Overlap 90.3 1.30
ViT Overlap 90.5 3.38

TransFG Non-Overlap 91.5 1.98
TransFG Overlap 91.7 5.38

is very complicated as well. We find that Vision Trans-
former structure outperforms ResNet structure a lot in these
large challenging datasets. ViT outperformes ResNet152 by
nearly 10% and similar phenomenon can also be observed
in iNat2018 and iNat2019. Our TransFG is the only method
to achieve above 70% accuracy with input size of 304 and
outperforms SOTA with a large margin of 3.5%.

For the just ended iNat2021 competition which contains
10,000 species, 2.7M training images, our TransFG achieves
very high single model accuracy of 91.3%. (The final perfor-
mance was obtained by ensembling many different models
along with multi-modality processing) As far as we know, at
least two of the Top5 teams in the final leaderboard adopted
TransFG as one of their ensemble models. This clear proves
that our model can be further extended to large-scale chal-
lenging scenarios besides academy datasets.

Ablation Study
We conduct ablation studies on our TransFG pipeline to an-
alyze how its variants affect the fine-grained visual classi-
fication result. All ablation studies are done on CUB-200-
2011 dataset while the same phenomenon can be observed
on other datasets as well.
Influence of image patch split method. We investigate
the influence of our overlapping patch split method through
experiments with standard non-overlapping patch split. As
shown in Table 5, both on the pure Vision Transformer
and our improved TransFG framework, the overlapping split
method bring consistently improvement, i.e., 0.2% for both
frameworks. The additional computational cost introduced
by this is also affordable as shown in the fourth column.

Table 6: Ablation study on Part Selection Module (PSM) on
CUB-200-2011 dataset.

Method Accuracy (%)
ViT 90.3

TransFG 91.0

Influence of Part Selection Module. As shown in Table 6,
by applying the Part Selection Module (PSM) to select dis-

Table 7: Ablation study on contrastive loss on CUB-200-
2011 dataset.

Method Contrastive Loss Acc (%)
ViT 90.3
ViT X 90.7

TransFG 91.0
TransFG X 91.5

Table 8: Ablation study on value of margin α on CUB-200-
2011 dataset.

Method Value of α Accuracy (%)
TransFG 0 91.1
TransFG 0.2 91.4
TransFG 0.4 91.7
TransFG 0.6 91.5

criminative part tokens as the input for the last Transformer
layer, the performance of the model improves from 90.3%
to 91.0%. We argue that this is because in this way, we sam-
ple the most discriminative tokens as input which explicitly
throws away some useless tokens and force the network to
learn from the important parts.
Influence of contrastive loss. The comparisons of the per-
formance with and without contrastive loss for both ViT
and TransFG frameworks are shown in Table 7 to verify
the effectiveness of it. We observe that with contrastive loss,
the model obtains a big performance gain. Quantitatively, it
increases the accuracy from 90.3% to 90.7% for ViT and
91.0% to 91.5% for TransFG. We argue that this is because
contrastive loss can effectively enlarge the distance of repre-
sentations between similar sub-categories and decrease that
between the same categories which can be clearly seen in
the comparison of confusion matrix in Fig 4.

Figure 4: Illustration of contrastive loss. Confusion matrices
without and with contrastive loss of a batch with four classes
where each contains four samples are shown. The metric of
confusion matrix is cosine similarity. Best viewed in color.

Influence of margin α. The results of different setting of
the margin α in Eq 9 is shown in Table 8. We find that a
small value of α will lead the training signals dominated by
easy negatives thus decrease the performance while a high
value of α hinder the model to learn sufficient information
for increasing the distances of hard negatives. Empirically,
we find 0.4 to be the best value of α in our experiments.



Figure 5: Visualization results of TransFG on CUB-200-2011, Stanford Dogs, Stanford Cars and NABirds datasets. Two kinds
of visualization are given, where the first and the third row show the selected Top-4 token positions while the second and fourth
rows show the overall global attention maps. See examples from NABirds dataset where birds are sitting on twigs. The bird
parts are lighted while the occluded twigs are ignored. Best viewed in color.

Qualitative Analysis

We show the visualization results of proposed TransFG on
the four benchmarks in Fig 5. We randomly sample three
images from each dataset. Two kinds of visualizations are
presented. The first and the third row of Fig 5 illustrated the
selected tokens positions. For better visualization results, we
only draw the Top-4 image patches (ranked by the attention
score) and enlarge the square of the patches by two times
while keeping the center positions unchanged. The second
and fourth rows show the overall attention map of the whole
image where we use the same attention integration method
as described above to first integrate the attention weights of
all layers followed by averaging the weights of all heads to
obtain a single attention map. The lighter a region is, the
more important it is. From the figure, we can see that our
TransFG successfully captures the most important regions
for an object, i.e., head, wings, tail for birds; ears, eyes, legs
for dogs; lights, doors for cars. At the same time, our overall
attention map maps the entire object precisely even in com-
plex backgrounds and it can even serves as a segmentation
mask in some simple scenarios. These visualization results
clearly prove the interpretability of our proposed method.

Conclusion
In this work, we propose a novel fine-grained recognition
framework TransFG and achieve state-of-the-art results on
four common fine-grained benchmarks. We exploit self-
attention mechanism to capture the most discriminative re-
gions. Compared to bounding boxes produced by other
methods, our selected image patches are much smaller thus
becoming more meaningful by showing what regions really
contribute to the fine-grained classification. The effective-
ness of such small image patches also comes from the Trans-
former Layer to handle the inner relationships between these
regions instead of relying on each of them to produce re-
sults separately. Contrastive loss is introduced to increase
the discriminative ability of the classification tokens. Exper-
iments are conducted on both traditional academy datasets
and large-scale competition datasets to prove the effective-
ness of our model in multiple scenarios. Qualitative visual-
izations further show the interpretability of our method.

With the promising results achieved by TransFG, we be-
lieve that the transformer-based models have great potential
on fine-grained tasks and our TransFG could be a starting
point for future works.
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